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A number of new results on the Ising ferromagnet are obtained as a con- 
sequence of correlation inequalities. These results concern the monotonicity 
properties of the correlation functions, the study of equilibrium states for 
certain boundary conditions, and the uniqueness of the state in a semi- 
infinite lattice. 
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1. I N T R O D U C T I O N  

Recent investigations on the Ising ferromagnet have significantly improved 
our understanding of the statistical structure of the state in the two-phase 
coexistence region. ~1-3) In particular, one knows, from results due to Do- 
brushin ~4) and van Beijeren, ~ that non-translation-invariant equilibrium 
states exist for the model of three (or higher) dimensions at low temperature. 
These states show a sharp interface between two regions of opposite magnet- 
ization. Under the same conditions the two-dimensional system does not 
have a sharp interface; Gallavotti ~6) and Abraham and Reed ~7,8~ have 
shown that in two dimensions the interface is diffuse, the width of the inter- 
face being of the order of the square root of its length. This supports the 
belief that there are no non-translation-invariant equilibrium states in two 
dimensions. It is also believed that the states encountered in Refs. 4 and 5 
are the only extremal noninvariant states in three dimensions. 

The analysis of these conjectures was the motivation for the study on 
which this paper reports. Let us say first that the existence of non-transla- 
tion-invariant equilibrium states in two dimensions has not been completely 
ruled out. However, strong evidence for their absence is obtained from our 
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results. These questions are analyzed in Section 4. A number of other results 
on related problems in the Ising ferromagnet are proved by the methods 
developed in this analysis. They concern the monotonicity properties of the 
correlations, which are discussed in Section 3, and the uniticity of the state 
in a semiinfinite two-dimensional lattice, proved in Section 4. Some other 
remarks and applications of these results are mentioned along the way and 
in Section 5. Applications of correlation inequalities are the basic ingredients 
in all the proofs of the paper. 

2. D E F I N I T I O N  A N D  N O T A T I O N S  

We consider a simple cubic lattice in d dimensions with unit edges and 
a parallelepipedic box A in the lattice. A lattice site will be represented by 
its Cartesian coordinates 

x = {x 1, x 2 ..... x a} (1) 

which take integer values. A may then be regarded as a subset of Z a. At 
each lattice point there is a spin ex = _+ 1. 

The energy of a spin configuration e = {crx) is given by 

Ha(e )=  - J  ~ exe v -  ~,  h~e~ (2) 
( x , ~ > c A  x e A  

with associated probability measure 

WA(cr) = Z -1 exp[ -  flHA(cr)] (3) 

The first sum in (2) runs over nearest neighbor pairs in A and the second 
sum can be considered to represent an external magnetic field and/or a 
boundary term. In this last case one takes 

h x = J b x ,  b ~ =  +1 (4) 

for x in the boundary of A. J is assumed to be positive (ferromagnetic inter- 
action) and/3 = 1/kT denotes the inverse temperature. 

Let ea be defined for any finite set A of lattice sites by 

ea = I - I  ex (5) 
x ~ A  

and let its expectation with respect to (3) be denoted by (~,,)A. Then, an 
equilibrium or a Gibbs state of the system is the collection of all limits 

<eA> = lim <~a>A (6) 
A-~oo 

for any convergent sequence of boxes increasing to Za with some boundary 
conditions. 
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The state (~A) is said to correspond to free boundary conditions if no 
boundary term is taken in (2). We let (CrA)A(+) and @A)a(-~ denote the 
states that take in the boundary of A and all bx = + 1 and all bx = - 1 ,  
respectively. The limits (6) exist for such boundary terms and will be denoted 
(aA) r, @A)+, and @A)-- Examples of other boundary terms will be given 
in the following. 

3. M O N O T O N I C I T Y  PROPERTIES  OF 
T H E  C O R R E L A T I O N  F U N C T I O N S  

The inequality 

@o.o%.,~) /> @o.o~m.~+l) if m >/ O, n >/ 0 (7) 

showing the decrease with the distance of the two-point correlation function, 
can be found in the book by McCoy and Wu (Ref. 9, p. 306) and in the 
references quoted in this chapter. It is given there as a conjecture coming 
from exact computations in two dimensions and zero magnetic field, where 
(7) is found in the particular case m = 0. In fact, as we shall see, this in- 
equality holds in much more general situations as a consequence of Lebowitz 
inequalities. After having remarked this fact, we found out that Schrader <1~ 
has obtained a proof  of inequality (7) by using field-theoretical techniques. 
The method we use gives in fact a series of inequalities among which (7) is a 
particular case. They are summarized in the following theorem. 

T h e o r e m  1. Let us consider the Ising ferromagnet in d dimensions 
with a nonnegative, uniform magnetic field. A set A of lattice sites being 
given, let .4 and A* denote the symmetric sets with respect to the planes 
x I = - �89 x 2 = - �89 If  A and B are two finite sets of sites lying above these 
two planes, the following inequalities hold: 

( ,~ ,~)  1> (~ ,~ , )  (8) 

(9) 

The same inequalities hold for the symmetry with respect to the two diagonal 
planes x 1 - x 2 = 0 and x ~ + x 2 = 0 provided that both sets A and B lie 
strictly above these two planes. When the external field is zero, the correla- 
tions are assumed to correspond to the state with free or with ( + )  boundary 
conditions. 

To make more explicit the significance of these inequalities, we next 
write them in the particular case of the two-point correlation functions. 
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Corollary 1. In particular, we have 

- -  + 1 >  

<(rooCrm+l,n> - -  (CrooCrm+l,n+l> ~ O, if m, n >/ 0 (10) 

>1 (aOOOm+l,n+l> -- @O0~m+~.,~> >1 0, if - -m < n < m (11) 

where the indices indicate the first two coordinates in the lattice, the other 
coordinates being equal. (See also Figs. I and 2 for notations.) 

Inequality (8) comes from Lebowitz inequalities applied to the dupli- 
cated spin variables introduced in Ref. 5, (9) from a next duplication and 
Ellis-Monroe inequalities. 

Let 2 = { - ( x  1 + 1), x 2 ..... x a} be the reflection of the lattice site x with 
respect to the plane x 1 = _1 .  We assume that A is a symmetric paralMe- 
pipedic box and we denote by A1 the set of points such that x 1 >/ 0 (the 
upper half of  A); for all x e A1 we introduce the variables 

sx -- �89 + o7~); tx = �89 - o7~ ) (12) 

and the fields 

H~ = hx - h ; ;  K= = hx - hx (13) 

Then, the Ising Hamiltonian can be written as 

-HA(or) = 2J E (SxSy + t~ty) 
< x , y >  ~ A1 

+ J ~ (2s~ u -t- 1) + ~ (H~s= + K=t~) (14) 
X~A 1 ,X = 0 X~A 1 

Under the conditions of  the theorem {Hx t> 0, K~ >/ 0} the first Lebowitz 
inequality (11~ applies to this Hamiltonian. Therefore 

(SAtB) >/ 0 (15) 

11 t 

r ' ' i  x ~ x t  

Fig. 1. Symmetry planes of the duplicated variables. 
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Fig. 2. The two-point correlation functions appear- 
ing in Theorem 1. 

4t 

7 . I  ~* 

We continue to use in (15), and we shall also use in the following, the nota- 
tion (6) for the products of  the new site variables introduced into the dis- 
cussion. 

We remark that (era -- oZ) for A c A~ is a sum of products of  the s 
and t variables with positive coefficients; therefore 

((OA--O~)(O~--Or))  I>0  if A, B c  A~ (16) 

From (16) and the symmetry of A and HA(a), inequality (8) follows. 
Next we introduce a second symmetry in the lattice x - +  x*, x* = 

(x ~, - ( x 2 +  1),..., xd}. We assume that A is also symmetric under this 
transformation and we denote by A~2 the set of  points x ~ A such that 
x 1 i> 0 and x 2 /> 0. For all x ~ A~2 the following variables are introduced: 

~:r = �89 + s~,); 7~ = �89 + t x )  
(17) 

f l~  = � 89  - s~.); 3x = �89 - t~) 

It  is easy to see that HA(or) is again, under the conditions of the theorem, ferro- 
magnetic in terms of these new variables, and that (oA* -- oz, + o A -- oz) 
for A c A~2 is a sum of  products of  these variables with positive coeffi- 
cients. Hence, by applying the following Ellis-Monroe inequalities c9~ 

we get 

((OA-- O,~--cr A .+  O,~o)(OS-- o r - - o r B , +  on~ /> 0 if A, B c  A~2 (19) 

which by the symmetry of A and HA gives inequality (9). 
Duplication with respect to the diagonal plane x 1 = x 2 is done in a 

similar way. A point x being given, its image will be ~ --- {x 2, xl,..., xa}. We 
let A' denote the set of  all points x such that x ~ > x 2, in a symmetric box A. 
For  x ~ A' the variables (12) and the fields (13) are introduced; for the 
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points x such that x 1 = x 2 the original spin variables are conserved. The 
Ising Hamiltonian is then 

-I-IA(,,) = 2J y (~xs, + txt,) + 2J ~, ,,x~, 
( x , v )  r ( x , ~ )  c . ,X  

X 1 = X ~ ; y ~ A "  

+ ~ (~/xSx +/~xt2) + ~ h2~ (20) 
XE.Ik" X E A , X  x = X 2 

By applying to this new Hamiltonian the same arguments as above, in- 
equality (8) follows with the new interpretation. A second duplication with 
respect to the other diagonal plane can be done in a similar way and leads 
to a complete proof of Theorem 1. 

The corollary corresponds to the particular case of Theorem 1 in which 
the sets A and B reduce to a point and the coordinate axes are chosen in 
such a way that B and its symmetric sites are nearest neighbors (Fig. 2). 

A similar decreasing property of the correlations can also be deduced 
for the plane rotator model with nearest neighbor ferromagnetic inter- 
actions. In this model an angle variable 0x is associated to each lattice 
point and the Hamiltonian is given by 

--HA = ~ (J~cosO~cosOy +J2sinO~sinOv) 
( x , ~ )  c A  

+ ~ [hx cos Ox + hu sin 0~] (21) 
X ~ A  

We shall assume that J1, J2, hx, h2 a r e  positive constants. The duplicated 
variables can be introduced by 

~ '  = �89 0~ + cos 02), /~x' = �89 Ox - cos 02) 
~,~' = �89 02 + sin 0x) 8~' = �89 02 - sin 0~) 

and, similarly to the case of Ellis-Monroe inequalities, the positivity of the 
expectations of products of these variables can be obtained. The proof is 
easily done by adapting the arguments used in Ref. 13. From this fact the 
following proposition follows. Let A and B denote two sets of lattice sites 
lying above the plane x 1 = - �89 and let A- and B be the corresponding sym- 
metric sets with respect to this plane; then we deduce the following corollary. 

Corollary 2. For the Hamiltonian (21) the following inequalities hold: 

co 0  cos0 ) (  os0  cos0 ) 
(~I~A sin O~ I--I~B sin 0x)>_. ~1"~  a sin O~ ~I--I sin 0 ~  (23) 

( I ' ~  a sin 0x I'-I.~n cos 0 . ) ~ <  ( V f l  a sin o. 1--Ix~n cos 0 , , )  (24) 
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In particular, the inequality [corresponding to (7)] 

(cos(Ooo - Om,~)) >1 (cos(Ooo - Om,~+l)) if m >/ O, n >/ 0 

showing the decreasing of the two-point correlation functions, is obtained 
by adding the first two inequalities above in the case where A and B reduce 
to a point. 

As an application of Theorem I, we give the following proposition. 

Corollary 3. Let us consider in the two-dimensional Ising ferromagnet 
the two-point correlation functions 

f0(L) = @oo%n), L = (m 2 + n2) 1/2, tan 0 = n/m (25) 

at large distances, the direction 0 being kept fixed. At the critical point 

fo(L) = O(L -1/4) for L -+ oe (26) 

At the critical point the behavior of f0(L) in the diagonal directions 
0 = + b r  is known(a~; it decreases as L -1/4. Away from the critical points, 
the truncated two-point function decreases exponentially when L - +  oo. 
From the second inequalities in (10) and (11) we can estimate f0(L) (see 
Fig. 3); then, for instance, 

f~l~(L1) <~ fo(L) <~ f~14(L~); L1 = L cos(�89 - 0); L2 = 21/2L cos 0 (27) 

in the case 0 ~< 0 ~< ~rr. From this, Corollary 2 follows. 
Some more general Hamiltonians and boundary terms can be con- 

sidered provided that they are ferromagnetic in the duplicated variables. 
For  instance, inequality (7), which can be written exactly as (txty) >>. O, is 
a particular case of Lebowitz's (tA) >~ 0, and holds therefore if Kx /> 0 
for any Hx. As a second example we can take a ferromagnetic model with 
nearest and next nearest neighbor interactions. Duplication with respect to 
a diagonal plane can be done as before, leading to a Hamiltonian analogous 
to (19), and therefore inequalities (l l) hold also in this case. Duplication 

Fig. 3. Comparison of the two-point correlation functions 
at large distances in Corollary 3. 
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with respect to the planes orthogonal to the coordinate axis can also be 
considered, by keeping the variable ax for x in the plane x 1 = 0 and dupli- 
cating the spins symmetric with respect to the plane x 1 = 0 as in Ref. 5. 
One obtains <CrooCr,,,~) t> <%oCr,,,~+l>. 

Extensions of Theorem 1 [inequality (8)] can also be obtained for 
higher order or continuous spins as well as in the P(~0) field theory models. 
The inequality (9) of Theorem 1 holds in systems of continuous spins and 
~04 models, which reduce in fact to spin-�89 systems; we refer for example to 
Refs. 13 and 14 for the needed inequalities. Finally, let us mention that cer- 
tain applications of these inequalities to the P(~0) field theory model have 
been proposed in Ref. 10. 

The remarks above will apply also to the results concerning estimations 
in the following sections. 

4. ON E Q U I L I B R I U M  STATES A N D  B O U N D A R Y  
C O N D I T I O N S  

In this section we prove that a large class of boundary conditions give 
translation-invariant equilibrium states in the two-dimensional Ising ferro- 
magnet at zero magnetic field and therefore that no rigid interface is present 
in these cases. (For h ~ 0 the equilibrium state is known to be unique.) 

The initial idea for the following treatment can be described as follows. 
Let us consider the difference 

< ' ; r e , n . 1 )  - -  < ~ , . , . )  

between the magnetizations at two nearest neighbor points and suppose 
that we want to make it as large as possible. It seems plausible that this 
should occur for the boundary condition corresponding to taking the spins 

A(+) :  bin,,, = _.%_1 if n' i> n + 1; b,~,,,,= - 1  if n' ~< n 

on the boundary, which are in fact the boundary conditions considered in 
Refs. 4-8. This intuition relies on the assumption that the spin ~m,,+ 1 should 
be more affected by the + 1 spins than by the - 1  spins on the boundary, 
while for the spin Crmn the contrary occurs, i.e., that the influence of the 
boundary on the state at a lattice point decreases with the distance, a fact 
more or less related to the decreasing property (7) of the correlations. I f  it 
could be proved that the difference between the two magnetizations takes 
its largest value for the condition A(+),  it would follow that the obtained 
state is in some sense extremal, and, by applying the results in Refs. 7 and 8, 
that the magnetization is invariant in two dimensions. This statement un- 
fortunately has not been proved in general, but the argument above has 
suggested to us to apply the correlation inequalities in the treatment of the 
problems considered in this paper. 
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Another approach to these problems, using contour techniques at low 
temperature (as in Ref. 6), has been developed by Higuchi/15~ Also in this 
case a complete answer to the conjecture on the absence in two dimensions 
of non-translation-invariant states has not been found. Earlier results con- 
cerning the discussion in this section have been given in Ref. 16. 

We shall first study the limiting state obtained from the boundary con- 
dition A(_+). As mentioned in the introduction, this state was first studied 
by Gallavotti/6~ who showed that it is translation invariant at low tempera- 
ture. Abraham and Reed(~. a~ showed later, by direct computations valid at 
any temperature, that the magnetization is zero in the middle of a big box. 
By using this last result we shall give here a complete proof  of the transla- 
tion invariance of this state. 

Proposition 1. Let @A)A(• denote the correlation functions for the 
Ising ferromagnet in a box A, symmetric with respect to the plane x* = - �89 
with the boundary term corresponding to bx = + 1 if x ~ /> 0 and bx = - 1 
if x* ~< - 1. Let Sx and tx be defined as in (12). Then the limits 

lim (SA)A~> = (SA)~; lim(tA)A(• = ( tA)  • (28) 
A ~ c ~  

exist and define correlation functions which are invariant under the lattice 
translations orthogonal to the x* axis. Furthermore, 

lim (tA+xIB) • = ( t a ) ~ ( t B )  ~ (29) 
lxl~o:x*=0 

for these translations. 
We first notice that, since the Hamiltonian can be written in the form 

(15), the second Lebowitz inequalities (**~ 

(SASB) >1 (SA)(SB) 

( tAtB) >1 ( t A ) ( t B )  (30) 

hold, provided that Hx /> 0 and K~ /> 0 for all x ~ A,. This shows that 
(SA) decreases and ( ta)  increases when the fields Kx increase. Hence 
(SA)a(• and (tA)A(~) are monotone functions of the box A with respect to 
the inclusion. Then the same arguments, due to Griffiths (partially reported 
in Ref. 17) which have been used for the state (eA)a(+) (see, for instance, 
Lemma 2.4 in Ref. 18) can be applied. From these arguments, the existence 
of  the limits (28), the translation invariance, and the cluster property (29) 
follow. 

In particular, since 

(sxsv)  �9 l i e  ~ \ ~  
(30 
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the two-point  correlat ion functions (or,c%) ~ exist for  any pair  (x, y)  and 
are t ranslat ion invariant  in the directions or thogona l  to the x ~ axis. 

Proposition 2. Let us consider the Ising fe r romagnet  in two dimen- 
sions and let (aA)A(• be defined as in Proposi t ion  1. Then,  the limiting state 
is t ranslat ion invariant  and 

<erA> ~ = lim <CrA>A(~) = ~<Cra> + + <~rA>-} (32) 
A - - +  oo 

The p r o o f  is based on the A b r a h a m  and Reed result that  (o~> ~ = 0. 
Let e~ = {1, 0) be the unit  vector  in the x ~ direction, and introduce the 

occupat ion  number  variables 

nx = �89 + 1) (33) 
Let us assume that  

A = {xe212; - N ~ <  x 1 ~< N -  1, - N ~ <  x 2 ~< N -  1} 
(34) 

A ' = { x ~ 7 7 2 ;  - ( N +  I ) ~ x l < ~ N - 1 ,  - N < ~ x 2 < ~ N - 1 }  

Then,  by the F K G  inequalities (19) we get 

(hA)A(• ~< (nA)A'(~) ~< (ha+el)a(4-) (35) 

We notice (Fig. 4) that  one passes f rom the second to the first system by 
introducing a negative field h x - + - o o  for  all x ~ A in the layer x l =  
-(N + 1), and f rom the second to the third system by introducing a positive 
field hx -+ + ~ for  all x E A in the layer x ~ = N - 1 and  a + 1 bounda ry  
spin in the two points  with x ~ = - 1. Since (~x~A n=) -- nA is an increasing 
funct ion in the n variables,  the F K G  inequalities imply also that  

((~nx)--nA~(• << . ~(~nx+ez)--nA+ez~(+) (36)  

+ 

+ 

+ 

§ § + § + + + -I- 

4 

�9 "v-l ' t~ t 4 -  

�9 ~ + 

q- 

-i- 

4- 

+ 

§ 

m 

m 

-I- 4- 4- 4- 

4- 

4 "  � 9 1 6 2  

4" 

+ 

4- 

+ 

m 

Fig. 4. B o u n d a r y  t e rms  appea r ing  in the  p r o o f  o f  P ropos i t i on  2. 
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Therefore 

0 ~ (hA>A(• (nA+ez>A(• <- ~ ((nx>A(• -- (nx+~l>^(• (37) 
x ~ A  

But <nx>A<• 1 when A ~ oo for all x. Hence the state is translation in- 
variant in the x 1 direction (the use of such an increasing function was intro- 
duced by Lebowitz and Martin-LSfr176 

From this and Proposition 1 we deduce that the two-point correlation 
functions are translation invariant. Hence 

< ~ x ~ >  • = < ~ x ~ >  + (38)  

from the fact, proved in Ref. 21, that the translation-invariant correlation 
functions with an even number of points are unique in the two-dimensional 
Ising ferromagnet. Although this fact is not explicitly stated, it follows 
easily from the proof  of Theorem 1 in Ref. 21. 

Now we apply a recently discovered inequality by Lebowitz. ~m) In our 
case it says that 

<~A>A<+)- <CrA>A I> ](~B>A<+)<CrA~B>A- <~>A<aA~B>A~+)J (39) 

where <~A>A denotes the correlation functions associated with an arbitrary 
boundary term in the box A. From (39) it follows that if, when A --~ oc the 
two-point correlations of both systems coincide, then all even correlation 
functions coincide. This allows us to deduce, by taking into account the 
results in Ref. 21, that then the state obtained from <~A>^ when A--> oo 
is translation invariant and therefore a linear convex combination of the 
( + )  and ( - )  states. 

In the present case, from (38) we get (32). 
We shall next consider more general boundary conditions. 

L e m m a  1. Let us consider the Ising ferromagnet in d dimensions. 
Assume that the box A is symmetric with respect to the plane x ~ = - � 8 9  
and introduce the notations (12) and (13). Let us denote by the superscripts 
H and K the original system, and by the superscripts [HI and ]K I the systems 
in which Hx and Kx have been replaced by IH~[ and ]Kx[ for all x ~ A. Then 

if H~ >>. O, <SA> IKI <~ (SA> K, <tn> IKI >>- (ti> ~ (40a) 

if K~ >>. O, (SA> lul >>" <SA>H; (tA> Im <~ (tA> I-I (40b) 

We shall prove only (40a) since (40b) is derived in a similar way. Let 
us consider the Hamiltonian 

- H a  = 2J ~. (s~s~ + t~tv) + d ~ [2(s~) 2 - 1] .r  
( X , y >  ~ h I x ~ A 1 ;  x I = 0 

+ + + IKxltx,,  (41) 
X e A 1  x E A 1  ; K x  > 0 X E A  1 ; K x  < 0 
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in which an additional spin variable % = + 1 has been introduced. When 
e, = + 1, (41) becomes the Hamiltonian corresponding to the system [KI, 
and for ~ = - 1 ,  (41) becomes the Hamiltonian of the system K. The 
second Lebowitz inequality 

(tAct.> /> <tA>(cr.> (42) 

for the system (41) gives then 

<tA)ZI~:I -- <tA>KZ K 
ZI~:I _ Z~; 

which after simplification becomes 

zltiI<tA> IKI + ZK<IA> K 
>>- ZIKI + Z K 

(tA) IKI >/ (tAU 

In the same way the inequality 

(SA~> ~< <SA><e~> (43) 

for the system (41) proves the first inequality in (40a). 
From the lemma the boundary conditions 

B0: bx = +1, b~ = +1; B: b x +  b~ >/ 0; B': bx-bz~  ~< 0 

can be compared. They correspond to the following possibilities in the sym- 
metric boundary points: 

Bo: { ~  ___); B: (++ + ~ ) ;  B': f ~  - + )  (44) 

Let us suppose that b;r coincides in the systems A(Bo), A(B),  and A(B'); 
then 

(SA>A~B) >>- <SA>A~o) >1 <SA>A~B') (45) 

(tA)A(B) <. (tA>A(BO) <~ (tA>a(n,) (46) 

On the other hand, the Lebowitz inequalities yield 

(SA>A(~o) >>- <Sa>A(~) (47) 

<tn)A~Bo) ~< <ta>A~) (48) 

T h e o r e m  2. Let us consider the two-dimensional Ising ferromagnet. 
Let A(B)  be a symmetric box with respect to the line x 1 = - �89  with a boun- 
dary term satisfying the condition bx + b~ >1 0 (or the condition bx + b~ <~ O) 
for all pairs (x, .~) of symmetric boundary points. Then, the limiting state 
is translation invariant and therefore 

lim <(rA>A(~) = ((rA> B = A<~A> + + (1 -- A)((ra>- (49) 
A ~ o O  

for a certain A, 0 ~< A ~< 1. 
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We consider the case in which the condition bx + b~ 1> 0 is satisfied; 
the same statement follows in the case bx + b,~ ~< 0 by the spin reversal 
symmetry. From inequalities (45) and (47) and Proposition 2 we get 

( s x s y )  B >1 ( s x s ~ )  ~: = (s~ ,s~)  + (50) 
Since 

4SxSu = e x %  + ~r;~e~ + Crx~ ~ + c~Z~ % (51) 

and since for any pair of  points @ x % )  B <~ (ex%) +, it follows from (50) 
that 

@x%)" = (ax%) + (52) 

The two-point correlation functions of the B state coincide with those of 
the ( + )  state. Then the argument used in the last part  of the proof  of Proposi- 
tion 2 can be applied, and then Theorem 2 follows. 

Figure 5 shows examples of  boundary conditions in which Theorem 2 
applies. 

We remark that from the Abraham and Reed result and the considera- 
tions above, it follows precisely that if (~A)ACm is the state of Theorem 2 in 
a large square box of side L -+ oo, then (aA)A(~ is translation invariant in 
the region Ix l < L~ for 0 ~< a < �89 

The possibility of the existence of non-translation-invariant states in 
the two-dimensional Ising model looks very unlikely after Theorem 2. First, 
it eliminates a large class of  boundary conditions. Second, we notice that 
the conditions on the boundary terms are referred to a particular horizontal 
line which does not play a role in the conclusion. 

5. ON THE E Q U I L I B R I U M  STATE IN 
A S E M I I N F I N I T E  LATTICE 

In this section a proof is given of the unicity of the state in a semi- 
infinite lattice in two dimensions. This fact appears as a direct consequence 
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Fig. 5. Examples of boundary conditions in which Theorem 2 applies. 
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of  the absence of  a sharp interface in the (_+) state. A discussion of  this 
problem has also been announced  by Dobrushin  in Ref. 23. 

T h e o r e m  3. Let us fix for  all points in the layer x 1 = 0 the spins 
a= = + 1. Let A be a finite set o f  points situated above this layer (i.e., such 
that  x 1 > 0) and Q a rectangular box, its lower side coinciding with the 
line x ~ = 0 and arbitrary boundary  conditions in the other sides. The semi- 
infinite state is defined as a limit o f  the form 

(aA)s.1. = lim ( ~ ) o  (53) 
Q ~ o o  

for  some sequence o f  boxes increasing to the semiinfinite lattice x '  /> 0 
with some boundary  terms. In  the two-dimensional  Ising ferromagnet  the 
semiinfinite state is unique. 

Let x be a point  above the layer x 1 = 0 and let (tx)A(~o) be defined as 
in (44) and (46). In  the system associated with A(Bo) we introduce a posi- 
tive field Hx for x 1 = 0, which increases to + oo. We obtain then a system 
denoted A(s) in which a= = + 1 for  all points in the two layers x ~ = 0 and 
x ~ = - 1. F r o m  the Lebowitz inequalities (30) we get 

(tx)A(Bo) /> (t~)A(~)= (crx)Q(+)-  (ax)Q (54) 

where Q denotes the semi-system with the same boundary  term as in the 
lower half  o f  the box A(Bo). I t  can therefore be any boundary  term (Fig. 6). 
F r o m  Theorem 2, it follows that  

0 ~< lim((cr~)o(+ ) - (a~)o) ~< lim (tx)ACB0) = 0 (55) 
Q-*oo A--* oo 

As in the p r o o f  o f  Proposi t ion 2, we now apply F K G  inequalities. Then 

(nA~Q(+) >/ (na)o, ~ (x~eA nx) -- nA~O(+ ~ ( (x~eA nx) -- nA~ 
(56) 
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Fig. 6. Construction for the proof of Theorem 3. 
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From (55) and (56) we have 

lim (n.4>Q = lim (na>~+~ (57) 

which proves the unicity of the semiinfinite state. 
We remark finally that Theorem 3 is a particular case of a more general 

statement which can be proved similarly. Instead of placing the + 1 spins 
on the lines x ~ = 0, x ~ = - 1 ,  one can put them arbitrarily in symmetric 
points and the same consequences follow. This yields the following proposi- 
tion. 

Let an infinite connected line ~, of + 1 spins be given, entirely lying above 
any given horizontal line. Then the correlation functions for points above the 
line ~, are unique. The same fact is true under the condition that all points 
of  y have ordinates bounded from below as the square root of its distance 
to the origin (exactly, f rom the Abraham and Reed results, if for all x ~ ~,, 
x ~ > - (x2)"  for a certain ~, 0 ~< ~ ~< �89 

6. ON N O N - T R A N S L A T I O N - I N V A R I A N T  E Q U I L I B R I U M  
S T A T E S  IN T H R E E  OR M O R E  D I M E N S I O N S  

We next make some brief comments concerning the Ising ferromagnet 
in higher dimensions. Clearly Theorems 2 and 3 still hold in three dimen- 
sions if no rigid interface is present for the A(+)  boundary condition. We 
recall that there is the belief (5) that this interface ceases to be rigid at a cer- 
tain temperature TR less than the critical temperature. 

Other non-translation-invariant states different f rom the states (+_) 
exist in three dimensions. Take, for instance, in a cubic box A centered at 
the origin the boundary condition 

b x =  +1  i f x  1 /> 0 and i f x  1 /> - 1  and x 2 1> 0; bx= - 1  otherwise 

(58) 

Comparison by F K G  inequalities with the (_+) state shows that the limiting 
state of  (58) is noninvariant in the x 1 direction. I t  is thought, however, that 
it is in fact a linear convex combination of different (_+) states, which should 
be the only extremal noninvariant states existing in the model. In other 
words, this means that there can only be planes parallel to the faces of  the 
lattice cubes at finite distance, and no angles, corners, or diagonal planes 
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as rigid interfaces. These kinds of interfaces would correspond to the follow- 
ing boundary terms in the box: 

bx = +1 if x ~ >/0  and x 2 >1 O; 

b ~ =  +1 if x ~ >1 0, x 2 /> 0, and x 3 /> 0; 

b , =  +1 if x 1 /> x 2 

bx = - 1  otherwise 

(59) 

bx = - 1  otherwise 

(6O) 

bx = - 1  otherwise 

(61) 

By applying the results of  Section 4, these boundary terms can be compared. 
For  instance, in the cases in which the diagonal state (61) is translation in- 
variant, then the states (60) and (61) should be also translation invariant. 

We notice finally that such new extremal noninvariant states do appear 
in four dimensions. This is shown by the following proposition, which 
answers a problem proposed to us by D. Ruelle. 

The boundary condition (61) which we shall denote A(D), leads in four 
dimensions to a rigid diagonal interface. The proof  of  this fact is very simi- 
lar to van Beijeren's, ~) with the following modifications: First we duplicate 
the system with respect to the diagonal plane x 1 = x ~ and second we ob- 
serve that placing the spins ex -- + 1 for X 1 = X 2 "t- 1 and ax = --1 for 
x 1 = x 2 -- 1 is the same as increasing the field Kx in the Hamiltonian (19). 
When this has been done one obtains a two-dimensional Ising system with 
( + )  boundary conditions in the diagonal plane. Therefore if x is a point 
in the diagonal plane x 1 = x 2, we obtain 

@:)A(D) (four dimensions) /> (ax)  + (two dimensions) 

This inequality can be compared to the van Beijeren's result, which for the 
four-dimensional case says 

(ax)  ~ (four dimensions) /> (ax)  + (three dimensions) 

for x = 0 and the (+ )  boundary term. This suggests that the diagonal inter- 
face is less rigid than the horizontal interface. Hence a new temperature 
TRo may appear above which the diagonal interface is no longer rigid, and 
this temperature should be less than or equal to the conjectured temperature 
Tn (mentioned in Ref. 5) above which the horizontal rigid interface disappears. 

The same argument as above shows that a rigid diagonal interface ap- 
pears at low temperature for the model with next nearest neighbor inter- 
actions in three dimensions. 
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7. C O N C L U D I N G  R E M A R K S  

Some comments  on Section 3 have been given at the end of  that  section. 
They apply also to the results concerning estimates in Sections 4 and 5. We 
wouId like also to point  out that  in discussing Theorem 1 with Hegerfeld, 
he indicated that  he has obtained a different p roof  o f  the decreasing proper- 
ties (7) and (8). Hegerfeld's proof,  which is also very short, is based on 
F K G  inequalities. 

Moreover ,  the results of  Sections 4 and 5 could be extended to more 
general situations: some cont inuous spin systems or  ~4 Euclidean field theory 
if the results in Refs. 6, 7, and 22 were known in these cases. 
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